top of page

Fitness Group

Public·12 members

Shareware Nfi Prnu Compare For Mac

With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

Shareware Nfi Prnu Compare For Mac

Digital image evidence is now widely available from criminal investigations and surveillance operations, often captured by security and surveillance CCTV. This has resulted in a growing demand from law enforcement agencies for automatic person-recognition based on image data. In forensic science, a fundamental requirement for such automatic face recognition is to evaluate the weight that can justifiably be attached to this recognition evidence in a scientific framework. This paper describes a pilot study carried out by the Forensic Science Service (UK) which explores the use of digital facial images in forensic investigation. For the purpose of the experiment a specific software package was chosen (Image Metrics Optasia). The paper does not describe the techniques used by the software to reach its decision of probabilistic matches to facial images, but accepts the output of the software as though it were a 'black box'. In this way, the paper lays a foundation for how face recognition systems can be compared in a forensic framework. The aim of the paper is to explore how reliably and under what conditions digital facial images can be presented in evidence.

The aim of this paper is to show the usefulness of modern forensic software tools for processing large-scale digital investigations. In particular, we focus on the new version of Nuix 4.2 and compare it with AccessData FTK 4.2, X-Ways Forensics 16.9 and Guidance Encase Forensic 7 regarding its performance, functionality, usability and capability. We will show how these software tools work with large forensic images and how capable they are in examining complex and big data scenarios.

While reaction time data have shown that decomposed processing of two-digit numbers occurs, there is little evidence about how decomposed processing functions. Poltrock and Schwartz (1984) argued that multi-digit numbers are compared in a sequential digit-by-digit fashion starting at the leftmost digit pair. In contrast, Nuerk and Willmes (2005) favoured parallel processing of the digits constituting a number. These models (i.e., sequential decomposition, parallel decomposition) make different predictions regarding the fixation pattern in a two-digit number magnitude comparison task and can therefore be differentiated by eye fixation data. We tested these models by evaluating participants' eye fixation behaviour while selecting the larger of two numbers. The stimulus set consisted of within-decade comparisons (e.g., 53_57) and between-decade comparisons (e.g., 42_57). The between-decade comparisons were further divided into compatible and incompatible trials (cf. Nuerk, Weger, & Willmes, 2001) and trials with different decade and unit distances. The observed fixation pattern implies that the comparison of two-digit numbers is not executed by sequentially comparing decade and unit digits as proposed by Poltrock and Schwartz (1984) but rather in a decomposed but parallel fashion. Moreover, the present fixation data provide first evidence that digit processing in multi-digit numbers is not a pure bottom-up effect, but is also influenced by top-down factors. Finally, implications for multi-digit number processing beyond the range of two-digit numbers are discussed.

Photography process reduces a three-dimensional (3D) wound to a two-dimensional level. If there is a need for a high-resolution 3D dataset of an object, it needs to be three-dimensionally scanned. No-contact optical 3D digitizing surface scanners can be used as a powerful tool for wound and injury-causing instrument analysis in trauma cases. The 3D skin wound and a bone injury documentation using the optical scanner Advanced TOpometric Sensor (ATOS II, GOM International, Switzerland) will be demonstrated using two illustrative cases. Using this 3D optical digitizing method the wounds (the virtual 3D computer model of the skin and the bone injuries) and the virtual 3D model of the injury-causing tool are graphically documented in 3D in real-life size and shape and can be rotated in the CAD program on the computer screen. In addition, the virtual 3D models of the bone injuries and tool can now be compared in a 3D CAD program against one another in virtual space, to see if there are matching areas. Further steps in forensic medicine will be a full 3D surface documentation of the human body and all the forensic relevant injuries using optical 3D scanners.

In this study, the applicability of holography in the 3-dimensional recording of forensic objects such as skulls and mandibulae, and the accuracy of the reconstructed 3-D images, were examined. The virtual holographic image, which records the 3-dimensional data of the original object, is visually observed on the other side of the holographic plate, and reproduces the 3-dimensional shape of the object well. Another type of holographic image, the real image, is focused on a frosted glass screen, and cross-sectional images of the object can be observed. When measuring the distances between anatomical reference points using an image-processing software, the average deviations in the holographic images as compared to the actual objects were less than 0.1 mm. Therefore, holography could be useful as a 3-dimensional recording method of forensic objects. Two superimposition systems using holographic images were examined. In the 2D-3D system, the transparent virtual holographic image of an object is directly superimposed onto the digitized photograph of the same object on the LCD monitor. On the other hand, in the video system, the holographic image captured by the CCD camera is superimposed onto the digitized photographic image using a personal computer. We found that the discrepancy between the outlines of the superimposed holographic and photographic dental images using the video system was smaller than that using the 2D-3D system. Holography seemed to perform comparably to the computer graphic system; however, a fusion with the digital technique would expand the utility of holography in superimposition.

A parallel reconstruction method, based on an iterative maximum likelihood (ML) algorithm, is developed to provide fast reconstruction for digital tomosynthesis mammography. Tomosynthesis mammography acquires 11 low-dose projections of a breast by moving an x-ray tube over a 50 angular range. In parallel reconstruction, each projection is divided into multiple segments along the chest-to-nipple direction. Using the 11 projections, segments located at the same distance from the chest wall are combined to compute a partial reconstruction of the total breast volume. The shape of the partial reconstruction forms a thin slab, angled toward the x-ray source at a projection angle 0. The reconstruction of the total breast volume is obtained by merging the partial reconstructions. The overlap region between neighboring partial reconstructions and neighboring projection segments is utilized to compensate for the incomplete data at the boundary locations present in the partial reconstructions. A serial execution of the reconstruction is compared to a parallel implementation, using clinical data. The serial code was run on a PC with a single PentiumIV 2.2GHz CPU. The parallel implementation was developed using MPI and run on a 64-node Linux cluster using 800MHz Itanium CPUs. The serial reconstruction for a medium-sized breast (5cm thickness, 11cm chest-to-nipple distance) takes 115 minutes, while a parallel implementation takes only 3.5 minutes. The reconstruction time for a larger breast using a serial implementation takes 187 minutes, while a parallel implementation takes 6.5 minutes. No significant differences were observed between the reconstructions produced by the serial and parallel implementations.

Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is


Welcome to the group! You can connect with other members, ge...
bottom of page